Update on Foreground Subtraction

Dave McGinnis
March 2

Pittsburgh Cylinder Simulations

- Simulated Pittsburgh Cylinders (32 feeds at 0.7λ spacing at 14.2 GHz)
- Simulated from 1200-1400 MHz in steps of 4 MHz using smooth Angelica sky model

First Stage foreground removal – Sky Subtraction

- Take cylinder visibility data and subtract a simulation of a smooth sky into a cylinder model
 - How good is the sky model?
 - For this case we will assume the sky model is perfect
 - How good is the telescope model?
 - For this case we will try the case the telescope gain is off randomly feed-to feed by 10% and subtract off a uniform gain model of the telescope

Cylinder Definition

```
x pittsCyl01BC0p1.xml
                                                                                                                            Perfect Cylinders
<?xml version="1.0" encoding="UTF-8" standalone="no"?</pre><!--blah--><!--
--><Cvlinder>
    <Feed ImagGain="0" RealGain="1" effWidth="7" lengthLocation="0" nCosThetaResponsePower="1" noiseTemp="75" pow</pre>
    <Feed ImagGain="0" RealGain="1" effWidth="7" lengthLocation="0.145" nCosThetaResponsePower="1" noiseTemp="75"</pre>
    <Feed ImagGain="0" RealGain="1" effWidth="7" lengthLocation="0.29" nCosThetaResponsePower="1" noiseTemp="75"</pre>
    <Feed ImagGain="0" RealGain="1" effWidth="7" lengthLocation="0.435" nCosThetaResponsePower="1" noiseTemp="75"</pre>
    <Feed ImagGain="0" RealGain="1" effWidth="7" lengthLocation="0.58" nCosThetaResponsePower="1" noiseTemp="75"</pre>
    <Feed ImagGain="0" RealGain="1" effWidth="7" lengthLocation="0.725" nCosThetaResponsePower="1" noiseTemp="75"</p>
    <Feed ImagGain="0" RealGain="1" effWidth="7" lengthLocation="0.87" nCosThetaResponsePower="1" noiseTemp="75"</pre>
    <Feed ImagGain="0" RealGain="1" effWidth="7" lengthLocation="1.015" nCosThetaResponsePower="1" noiseTemp="75"</pre>
    <Feed ImagGain="0" RealGain="1" effWidth="7" lengthLocation="1.16" nCosThetaResponsePower="1" noiseTemp="75"</pre>
    <Feed ImagGain="0" RealGain="1" effWidth="7" lengthLocation="1.305" nCosThetaResponsePower="1" noiseTemp="75"</p>
    <Feed ImagGain="0" RealGain="1" effWidth="7" lengthLocation="1.45" nCosThetaResponsePower="1" noiseTemp="75"</pre>
    <Feed ImagGain="0" RealGain="1" effWidth="7" lengthLocation="1.595" nCosThetaResponsePower="1" noiseTemp="75"</pre>
    <Feed ImagGain="0" RealGain="1" effWidth="7" lengthLocation="1.74" nCosThetaResponsePower="1" noiseTemp="75"</pre>
    <Feed ImagGain="0" RealGain="1" effWidth="7" lengthLocation="1.885" nCosThetaResponsePower="1" noiseTemp="75"</pre>
    <Feed ImagGain="0" RealGain="1" effWidth="7" lengthLocation="2.03" nCosThetaResponsePower="1" noiseTemp="75"</pre>
    <Feed ImagGain="0" RealGain="1" effWidth="7" lengthLocation="2.175" nCosThetaResponsePower="1" noiseTemp="75"</pre>
    <Feed ImagGain="0" RealGain="1" effWidth="7" 1X pittsCyl01.xml</pre>
    <Feed ImagGain="0" RealGain="1" effWidth="7"</pre>
                                                       (2xml version="1.0" encoding="UTF-8" standalone="no"2 <!--blah--><!--
    <Feed ImagGain="0" RealGain="1" effWidth="7"</pre>
    <Feed ImagGain="0" RealGain="1" effWidth="7"</pre>
                                                           <Feed ImagGain="0.0418" RealGain="1.0628" effWidth="7" lengthLocation="0" nCosThetaResponsePower="1" noiseTem</p>
    <Feed ImagGain="0" RealGain="1" effWidth="7" 1</pre>
                                                           <Feed ImagGain="-0.0566" RealGain="1.0226" effWidth="7" lengthLocation="0.145" nCosThetaResponsePower="1" noi</pre>
    <Feed ImagGain="0" RealGain="1" effWidth="7" 1</pre>
                                                           <Feed ImagGain="0.0375" RealGain="1.0001" effWidth="7" lengthLocation="0.29" nCosThetaResponsePower="1" noise</pre>
    <Feed ImagGain="0" RealGain="1" effWidth="7" 1</pre>
                                                           <Feed ImagGain="-0.0039" RealGain="1.0078" effWidth="7" lengthLocation="0.435" nCosThetaResponsePower="1" noi</pre>
    <Feed ImagGain="0" RealGain="1" effWidth="7" 1</pre>
                                                           <Feed ImagGain="-0.0671" RealGain="0.9525" effWidth="7" lengthLocation="0.58" nCosThetaResponsePower="1" nois</pre>
    <Feed ImagGain="0" RealGain="1" effWidth="7" 1</pre>
                                                           <Feed ImagGain="-0.0468" RealGain="1.0218" effWidth="7" lengthLocation="0.725" nCosThetaResponsePower="1" noi</pre>
                                                           <Feed ImagGain="0.0395" RealGain="0.9713" effWidth="7" lengthLocation="0.87" nCosThetaResponsePower="1" noise</pre>
                                                           <Feed ImagGain="-0.0059" RealGain="0.9944" effWidth="7" lengthLocation="1.015" nCosThetaResponsePower="1" noi</pre>
                                                           <Feed ImagGain="0.0673" RealGain="1.0351" effWidth="7" lengthLocation="1.16" nCosThetaResponsePower="1" noise</pre>
                                                           <Feed ImagGain="0.0461" RealGain="1.0359" effWidth="7" lengthLocation="1.305" nCosThetaResponsePower="1" nois</pre>
                                                           <Feed ImagGain="0.0539" RealGain="1.0703" effWidth="7" lengthLocation="1.45" nCosThetaResponsePower="1" noise</pre>
                                                           <Feed ImagGain="-0.0079" RealGain="0.9772" effWidth="7" lengthLocation="1.595" nCosThetaResponsePower="1" noi</pre>
                                                           <Feed ImagGain="-0.0127" RealGain="0.9346" effWidth="7" lengthLocation="1.74" nCosThetaResponsePower="1" nois</pre>
                                                           <Feed ImagGain="-0.0519" RealGain="0.9747" effWidth="7" lengthLocation="1.885" nCosThetaResponsePower="1" noi</pre>
                                                           <Feed ImagGain="-0.0095" RealGain="1.0519" effWidth="7" lengthLocation="2.03" nCosThetaResponsePower="1" nois</pre>
                                                           <Feed ImagGain="0.0313" RealGain="1.0203" effWidth="7" lengthLocation="2.175" nCosThetaResponsePower="1" nois</pre>
                                                           <Feed ImagGain="-0.0169" RealGain="0.9688" effWidth="7" lengthLocation="2.32" nCosThetaResponsePower="1" nois</pre>
                                                           <Feed ImagGain="0.0598" RealGain="1.0691" effWidth="7" lengthLocation="2.465" nCosThetaResponsePower="1" nois</pre>
                                                           <Feed ImagGain="-0.0302" RealGain="0.9749" effWidth="7" lengthLocation="2.61" nCosThetaResponsePower="1" nois</pre>
                                                           <Feed ImagGain="0.0517" RealGain="1.0569" effWidth="7" lengthLocation="2.755" nCosThetaResponsePower="1" nois</pre>
                                                           <Feed ImagGain="-0.0415" RealGain="1.005" effWidth="7" lengthLocation="2.9" nCosThetaResponsePower="1" noiseT</pre>
                  10% random gain
                                                           <Feed ImagGain="0.0007" RealGain="0.996" effWidth="7" lengthLocation="3.045" nCosThetaResponsePower="1" noise</pre>
                                                           <Feed ImagGain="-0.0558" RealGain="1.0643" effWidth="7" lengthLocation="3.19" nCosThetaResponsePower="1" nois</pre>
                                                           <Feed ImagGain="0.0291" RealGain="0.9308" effWidth="7" lengthLocation="3.335" nCosThetaResponsePower="1" nois</pre>
                  error Cylinders
                                                           <Feed ImagGain="-0.0259" RealGain="1.0218" effWidth="7" lengthLocation="3.48" nCosThetaResponsePower="1" nois</p>
```

Sky Subtraction Results

Second Stage Smoothness Subtraction

- From the sky difference map, fit each visibility spectrum "pixel" as a nth order polynomial in frequency
- A nth order polynomial will have n turning points.
- Further FFT filter the n tuning points

Hottest Pixel track

Hottest Pixel Track Fit Residuals

Foreground Removal at 1300MHz

Frequency Component

Filter Corner Effects

- Put white noise along the frequency axis for a single pixel
- Measure how much the foreground subtraction cuts into the signal

Random fluctuations in frequency spectrum

Fourier transform of random Fluctuations in frequency spectrum

Effect of 6 order Polynomial over 200 MHz

Random fluctuations in frequency spectrum with and without the filter

Populous Prequency MHz

Raw Data
Poly Filtered Data

Fourier transform of random Fluctuations in frequency spectrum

Future Work

- Simulate simple source with uniform fluctuations along frequency axis to make a "gee-whiz" picture
- Incorporate 3-D BAO signal on top of smooth Angelica sky map
- Start to investigate "bubble" filters

New Stuff - Frequency Fluctuating Sky Patch Simulation

Dave McGinnis

March 9, 2010

Angelica Sky Map

Freq. Fluctuation Patch r.m.s radius = 3 degrees

Freq. Fluctuation Patch Temperature vs Frequency

Angelica + Freq. Fluctuation Patch

Pittsburgh Cylinder Simulations

Scan Differences at 1223 MHz

Clean Sky + Freq.
Fluctuation Patch

Imperfect scan – perfect scan

Scan Smoothing at 1223 MHz

6 order smooth

12 order

smooth

Pixel Track – Mode 867 – Beam 15

Future Work

- Incorporate 3-D BAO signal on top of smooth Angelica sky map
- Start to investigate "bubble" filters